Обратная связь

ЗОЛОТОЕ ЗДОРОВЬЕ

Информационный портал о репродуктивном здоровье

Симптомы нижних мочевых путей. Перспективы диагностических и лечебных мероприятий с применений элементов Искусственного Интеллекта

И.В.Лукьянов
Кафедра урологии и хирургической андрологии РМАПО
(зав.кафедрой – член-корр.РАМН, профессор О.Б.Лоран),
г. Москва


   ДГПЖ на сегодняшний день остается одним из наиболее распространенных заболеваний, встречающих в урологической практике. Тенденции в социальной сфере и рост числа пожилых пациентов диктуют необходимость в разработке новых диагностических приемов и внедрения прогрессивных методов в широкую медицинскую практику.(1, 2, 7, 8)
   Многочисленные клинические проявления и симптомы ДГПЖ крайне разнообразны и зависят от прогрессирования заболевания, соматического и психического статуса, возраста, социального положения и медицинской осведомленности. (2, 3, 8)
   Только в последние два десятилетия в большинстве стран мира, в том числе и в России, наметилась тенденция к формированию единых принципов оценки и интерпретации симптомов ДГПЖ. Эта оценка базируется на уточнении не только каждого симптома и их совокупности, но и их корреляции с данными объективного обследования, возможности которого резко возросли в последние годы в связи с появлением новых технологий.
   Симптомы нижних мочевых путей (LUTS), помимо ДГПЖ, сопровождают и два других заболевания предстательной железы - рак и простатит. Этим следует объяснить необходимость дифференциальной диагностики при обследовании больных с различными видами нарушения мочеиспускания.

   Прогрессирующее развитие гиперплазии предстательной железы лежит в основе возникновения ряда осложнений: инфравезикальной обструкции, острой или хронической задержки мочеиспускания, возникновения камней мочевого пузыря, пузырно-мочеточникового рефлюкса, присоединения инфекции мочевыводящих путей, развития двустороннего уретерогидронефроза и хронической почечной недостаточности. В последние годы, в связи с возросшими знаниями о патогенезе заболевания, возможностями диагностики, появлением новых методов патогенетического, медикаментозного и оперативного лечения, а также осведомленностью и более ранним обращением мужского населения к врачу, мы значительно реже встречаем больных с далеко зашедшими осложнениями. У большинства из них развитие гиперплазии простаты не представляет непосредственной угрозы для жизни. Однако возникающие нарушения могут заметно ухудшать ее "качество". Оценка пациентом выраженности симптомов заболевания и "качества жизни", безусловно, субъективна. Именно поэтому отсутствует достоверная корреляция между тяжестью клинических проявлений гиперплазии предстательной железы, ее объемом и степенью нарушений мочеиспускания. Крайне важен поиск критериев, позволяющих предсказать прогрессирующее течение болезни и дающих возможность выявить тех пациентов, у которых велика вероятность развития осложнений. Наличие таких параметров позволит более точно определить выбор лечебной тактики.

   Симптомы нижних мочевых путей вследствие ДГПЖ (LUTS/BPH), - медленно прогрессирующее заболевание, но у некоторых пациентов наблюдается более быстрая прогрессия, чем у других. У 80% пациентов это вызвано усилением симптомов. Врач может оценить риск прогрессии. Минимальные значения показателя Qmax и остаточного объёма мочи являются серьёзными факторами риска прогрессии LUTS/BPH. Значительный объём простаты и уровень ПСА в сыворотке являются преобладающими факторами риска развития ОЗМ. После определения степени риска предполагаемое лечение должно быть сбалансировано с оптимальным соотношением эффект/побочный эффект. Терапия простатических симптомов должна заключаться в монотерапии антагонистами альфа 1 адренорецепторов, как подходящее лечение для многих пациентов с LUTS/BPH. В случае высокой степени риска прогрессии (большой объём простаты и повышение ПСА в сыворотке крови) LUTS/BPH показано введение в терапию ингибиторов 5 альфа редуктазы для получения максимального эффекта в снижении симптомов, и идеально для остановки прогрессии заболевания. (10)

   Менее 10 лет назад хирургические методы и наблюдение были общепринятыми повсеместно распространёнными методами ведения и лечения больных с LUTS/BPH. В последние годы медикаментозная терапия- наиболее часто используемый метод лечения ДГПЖ. В настоящее время антагонисты α1-адренорецепторов всё чаще и чаще используются в медикаментозной терапии, действуя на динамический компонент доброкачественной обструкции ПЖ. Ингибиторы 5α-редуктазы (финастерид, дутастерид) и другие препараты для лечения ДГПЖ оказывают редуцирующее действие на развитие тканей ПЖ и таким образом нейтрализуют механический компонент.
   Последние 10 лет активно обсуждаются схемы лечения на разных стадиях заболевания, схемы комбинации препаратов, учитываются и анализируются данные результатов лечения. (6)

   В урологической практике существует необходимость делать клинические прогнозирования индивидуально для пациента. Прогнозирования могут включать распределение пациентов в группы риска, постановка диагноза, прогнозирование результатов лечения, вероятность рецидива болезни и т.д. Традиционно, это прогнозирование получали с помощью статистических классификационных моделей. Эти модели предполагают, в лучшем случае, установление статистических взаимоотношений, которые позволяют определить только ограниченные типы относительно простых нелинейных межпеременных взаимосвязей и, в худшем случае, допускают линейные отношения среди всех переменных. Поскольку медицинским данным присущ большой разброс, они редко распределены нормально, имеются нелинейные межпеременные взаимосвязи, поэтому статистические модели часто теряют желательную точность, когда используются в клинической урологической практике.

   Технология использования ЭВМ для решения интеллектуальных задач, обычно решаемых человеком, известна как искусственный интеллект (ИИ). Несмотря на сравнительно долгую историю развития, к настоящему времени существует ограниченное число подходов к решению интеллектуальных задач. Это связано как с недостаточной изученностью мыслительных процессов, так и с изначальной неприспособленностью ЭВМ к решению невычислительных задач. Так как человек справляется с “интеллектуальными” задачами на порядок лучше ЭВМ, ИИ основывается на построении программных систем “по подобию” человеческого мозга.

   В соответствии с этим в рамках ИИ различают два направления. Одно из них состоит в моделировании работы мозга, то есть в создании так называемых нейронных сетей. Такие наборы используются в различных задачах диагностики, классификации и обучения, однако, для успешного функционирования необходимо большое количество обучающих примеров с уже известными результатами.

   Искусственные нейронные сети (ИНС) - нелинейные, вычислительные, математические модели для обработки информации, которые основаны на биологических нейронных системах. Они составлены из простых элементов (нейроны), работающих параллельно. Как в биологических нервных системах, функционирование сети определяется в значительной степени связями между элементами. Нейронная сеть обучаема, для исполнения специфический функции (например - поставка диагноз рака простаты) установки взаимосвязей между элементами. Связи настраиваются, используя учебные или обучающие алгоритмы. С помощью обучаемых алгоритмов, системы на основе ИНС формируют нелинейные классификационные решения, границы которых основаны на информации, представленной набором обучающих клинических примеров.

   Хотя использование ИНС в клинической медицине явление недавнее, много заявлений появилось или появляются. Доступность (пригодность) клинических технологий для практической урологии продолжает увеличиваться. Эти технологии включают методы диагностики, прогнозирования и определения стадии, основанные на элементах искусственного интеллекта.

   Второе направление состоит в моделировании высокоуровневых мыслительных процессов человека и структуры человеческой памяти. В рамках этого подхода выделяются основополагающие модели мышления, способы представления и использования знаний. Решение задач при этом обычно основывается на проведении компьютером цепочки рассуждений в соответствии с заложенными в систему знаниями о предметной области.

   Типичная интеллектуальная система (рис.1) строится по следующей схеме


Рис.1. Основные составляющие интеллектуальной системы


   Основная часть системы – процессор логического вывода – отвечает за функционирование системы и проведение рассуждений. Рабочая память содержит информацию о решаемой задаче, обычно в форме объект-атрибут-значение (например, пациент - температура – 37, или пациент – диагноз – ДГПЖ). База знаний содержит знания о предметной области, обычно представленные в виде правил, например: ЕСЛИ объем предстательной железы более 60 см3 , и структура железы однородная, и максимальная скорость потока мочи менее 10 мл/с, ТО диагноз – ДГПЖ.

   Процессор вывода ищет правила в базе знаний, которые могут быть применены для поиска новых данных на основании текущих фактов из рабочей памяти, таким образом, на каждом шаге вывода рабочая память пополняется новыми сведениями. Такой процесс продолжается до тех пор, пока не будет получена требуемая информация.
   Описанный подход, основанный на применении “ЕСЛИ-ТО” правил лежит в основе так называемых продукционных экспертных систем. Такая экспертная система содержит представленные в виде правил знания эксперта, и способна давать консультации (вырабатывать решения) по задачам, обычно решаемым экспертами. Область применения экспертных систем – это задачи, как правило, узкоспециализированные, для которых отсутствует четко формулируемый алгоритм решения, данные задачи нечеткие и зачастую недостаточны (т.е. система должна работать в условиях неопределенности).
   По описанному принципу строятся многие медицинские системы обработки информации и экспертного анализа. Данные системы позволяют на основе информации о клинических проявлениях и тестов сделать в короткий срок квалифицированное заключение по каждому конкретному случаю и выработать оптимальную стратегию лечения больного. С другой стороны в медицине находят широкое применение учетные системы, служащие для автоматизации документооборота, т.е. сбора, хранения и эффективного использования различных сведений о пациентах: учетных данных, симптомов, результатов клинических исследований и т.д.

   Продукционные правила системы построены на основании личного опыта врачей-экспертов высшей квалификации в области урологии. При построении правил в начале были выбраны и ранжированы основные факторы, оказывающие влияние на определение диагноза, а также основные варианты диагноза и направления лечения. Затем на основании рассмотрения реальных и гипотетических случаев строилось дерево решений, учитывающее выбранные факторы в качестве определяющих. Такой подход позволил построить прототип базы знаний системы, который затем многократно улучшался и корректировался для более точного рассмотрения отдельных случаев.

   С технической точки зрения система представляет собой законченное Win32-приложение, т.е. функционирует в среде Microsoft Windows 95/98/NT. Интерфейс системы позволяет оператору легко вносить информацию о новых пациентах, просматривать список пациентов, проводить диагностику и распечатывать выписки в соответствии с принятым стандартом. Таким образом, система удачно вписывается в существующий документооборот больницы, а также открывает путь к дальнейшей автоматизации этого документооборота на базе компьютерных технологий.

   Диагностика проводится системой с использованием встроенного модуля, который реализуется при помощи автоматической кодогенерации по исходным правилам базы знаний высокоуровневого кода на языке Object Pascal (5). Было разработано средство такой кодогенерации для сравнительно несложного продукционного представления знаний с использованием обратного вывода. Таким образом, полученный интеллектуальный модуль компилируется вместе с системой и не допускает дальнейшего просмотра и модификации правил кем-либо, кроме разработчиков системы. Таким образом, при сохранении интеллектуальной собственности авторов системы на заложенные знания, мы получаем легкомодифицируемую и расширяемую архитектуру, которая позволяет легко вносить дополнительные правила и рекомендации, т.е. проводить дальнейшее усовершенствование.

   В настоящее время система предназначена для локального использования на рабочем месте врача-уролога, т.е. база данных и диагностический модуль не могут совместно использоваться несколькими специалистами одновременно. Создание многомашинного сетевого варианта системы с централизованной базой данных и общим диагностическим модулем является одним из направлений дальнейшего совершенствования системы.

   Разработанная и внедренная в практику работы урологической клиники РМАПО на базе ГКБ им.С.П.Боткина диагностическая система позволяет проводить обучение начинающих врачей-урологов на конкретных примерах.
   Система постоянно совершенствуется и пополняется новыми диагностическими модулями. В настоящее время возможен дифференциально-диагностический поиск при подозрении на рак предстательной железы, разработан алгоритм для обследования и выбора тактики лечения пациентам с хроническим простатитом.

   Также одним из направлений совершенствования системы является включение в диагностический модуль сопутствующих заболеваний. Возможность оценки этих параметров позволяет провести необходимый комплекс диагностических и предоперационных мероприятий и выбрать оптимальный для каждого больного метод анестезиологического пособия.

   Широкое развитие сети Интернет в нашей стране позволяет проводить дистанционную консультацию пациента с LUTS практически из любого отдаленного места.
   Вместе с тем, разработка ЭС не позволяет полностью отказаться от эксперта-человека. Хотя ЭС хорошо справляется со своей работой, тем не менее, в определённых областях человеческая компетенция явно превосходит искусственную. Однако и в этих случаях ЭС может позволить отказаться от услуг высококвалифицированного эксперта, оставив эксперта средней квалификации, используя при этом ЭС для усиления и расширения его профессиональных возможностей.
   В связи со значительным расширением диагностических возможностей разработка и внедрение в широкую медицинскую практику различных компьютерных систем диагностики, выбора тактики лечения и прогнозирования результатов лечения представляют собой наиболее перспективное направления научных изысканий.

   Последние год-два отмечены стремительным приложением нейронных сети в клиническом урологии, особенно в диагностике, определения стадии и прогнозировании рака простаты. Нейронные сети, когда должным образом обучены, демонстрируют в большинстве примеров превосходящую прогностическую точность к многовариантным исследованиям регресса. В решении проблем, которые содержат больше, чем несколько переменных, особенно, когда эти переменные связаны нелинейными способами друг другу, или к результату, предпочтителен нейронный анализ сети из-за высокой точности результатов. Так как разрабатываются новые сывороточные, тканевые, и генетические маркеры, нервные сети будут играть большую роль в определении ценности нового маркера в постановке диагноза, определении стадии и прогноза заболевания.

    Полгода назад начались трудности с мочеиспусканием. Чтобы помочиться нужно сильно тужиться, струя очень слабая и прерывистая, а по завершению остаются ощущения неполного опустошения мочевого пузыря, а в процессе порой возникают болезненные ощущения как бы внутри члена.

    Читать далее

    Здравствуйте. В прошлом году поставили диагноз "хронический цистит", а в этом я начала жить половой жизнью. Во время полового акта испытываю неприятные ощущения, боли. Скажите, может ли болезненный секс быть связан с циститом?

    Читать далее

    Меньше недели назад мочеиспускание стало сопровождаться неприятными ощущениями, становясь болезненным ближе к завершению. Боль не острая, рези нет, но после того, как мочусь ещё минут 30-40 чувствую как зудит в мочеиспускательном канале.

    Читать далее
      Задайте вопрос специалисту